By Topic

A generalized suboptimum unequally spaced channel allocation technique. I. In IM/DD WDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bohyeon Hwang ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA ; O. K. Tonguz

Four-wave mixing (FWM) is the most serious fiber nonlinearity associated with low-input optical power levels in long-haul multichannel optical systems employing dispersion-shifted fiber. To reduce the crosstalk due to FWM, a generalized suboptimum unequally spaced channel allocation (S-USCA) technique is proposed and investigated. Even though the developed technique is useful in combating FWM crosstalk in wavelength division multiplexing (WDM) lightwave systems with up to 12 channels, its main virtue is in designing multichannel WDM lightwave systems with more than 12 channels. Comparisons of power penalty due to FWM between equal channel spacing (ECS) systems and the S-USCA systems are presented. It is shown that for an intensity modulation/direct detection (IM/DD) transmission system operating in an optical bandwidth of 16 nm with 0 dBm (1 mW) peak optical input power per channel, while a conventional ECS WDM system with 0.84-nm channel spacing cannot even achieve a bit-error rate (BER)=10-9, the suboptimum technique developed in this paper, for the same minimum channel spacing, can achieve a BER=10-9 with an FWM crosstalk power of less than 1 dB at the worst channel in a 20-channel WDM system

Published in:

IEEE Transactions on Communications  (Volume:46 ,  Issue: 8 )