By Topic

Resonance and damping in CMOS circuits with on-chip decoupling capacitance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Larsson, P. ; Bell Labs., Lucent Technol., Holmdel, NJ, USA

Design of on-chip decoupling capacitance and modeling of resonance effects in the power supply network of CMOS integrated circuits is addressed. The modeling is based on mathematical limits proving that damping will be low, resulting in resonance unless careful design is used. Design strategies that reduce resonance are discussed. It is shown that an optimal parasitic resistor in series with the decoupling capacitor gives a maximum damping factor of 0.5 and practical values are within the range 0.3-0.4. Examples of digital circuits show that proper design of on-chip decoupling capacitance may reduce the number of bonding wires by an order of magnitude. The modeling and design suggestions are also applicable to mixed-mode circuits. In particular, sampled analog networks benefit with a potentially higher sampling rate if enhanced damping is introduced during design

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:45 ,  Issue: 8 )
RFIC Virtual Journal, IEEE