Cart (Loading....) | Create Account
Close category search window
 

Robust channel estimation for OFDM systems with rapid dispersive fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ye Li ; Wireless Syst. Res. Dept., AT&T Bell Labs., Red Bank, NJ, USA ; Cimini, L.J. ; Sollenberger, N.R.

Orthogonal frequency-division multiplexing (OFDM) modulation is a promising technique for achieving the high bit rates required for a wireless multimedia service. Without channel estimation and tracking, OFDM systems have to use differential phase-shift keying (DPSK), which has a 3-dB signal-to-noise ratio (SNR) loss compared with coherent phase-shift keying (PSK). To improve the performance of OFDM systems by using coherent PSK, we investigate robust channel estimation for OFDM systems. We derive a minimum mean-square-error (MMSE) channel estimator, which makes full use of the time- and frequency-domain correlations of the frequency response of time-varying dispersive fading channels. Since the channel statistics are usually unknown, we also analyze the mismatch of the estimator-to-channel statistics and propose a robust channel estimator that is insensitive to the channel statistics. The robust channel estimator can significantly improve the performance of OFDM systems in a rapid dispersive fading channel

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 7 )

Date of Publication:

Jul 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.