By Topic

Discrete fractional Hartley and Fourier transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Soo-Chang Pei ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chien-Cheng Tseng ; Min-Hung Yeh ; Jong-Jy Shyu

This paper is concerned with the definitions of the discrete fractional Hartley transform (DFRHT) and the discrete fractional Fourier transform (DFRFT). First, the eigenvalues and eigenvectors of the discrete Fourier and Hartley transform matrices are investigated. Then, the results of the eigendecompositions of the transform matrices are used to define DFRHT and DFRFT. Also, an important relationship between DFRHT and DFRFT is described, and numerical examples are illustrated to demonstrate that the proposed DFRFT is a better approximation to the continuous fractional Fourier transform than the conventional defined DFRFT. Finally, a filtering technique in the fractional Fourier transform domain is applied to remove chirp interference

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 6 )