By Topic

Permutation flowshop scheduling by genetic local search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Yamada ; NTT Commun. Sci. Labs., Kyoto, Japan ; C. R. Reeves

In this paper, the landscape for the permutation flowshop scheduling problem (PFSP) with stochastic local search and a critical block-based neighbourhood structure has been investigated. Numerical experiments using small benchmark problems show that there are good correlations between the makespans of local optima, the average distances to other local optima and the distances to the known global optima. These correlations suggest the existence of a `big valley' structure, where local optima occur in clusters over the landscape. An approximation method for PFSP that would make use of this big valley structure is proposed by using a critical block-based neighbourhood structure, and a genetic local search method called MSXFGA, previously developed for the job shop scheduling problem. Computational experiments using more challenging benchmark problems demonstrate the effectiveness of the proposed method

Published in:

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1997. GALESIA 97. Second International Conference On (Conf. Publ. No. 446)

Date of Conference:

2-4 Sep 1997