By Topic

A novel integrated silicon capacitive microphone-floating electrode “electret” microphone (FEEM)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Quanbo Zou ; Sch. of Mech. & Production Eng., Nanyang Technol. Univ., Singapore ; Zhimin Tan ; Zhenfeng Wang ; Jiangtao Pang
more authors

A novel principle “electret” microphone, i.e., floating electrode electret microphone, is proposed and implemented in this study. Single-chip fabrication and corrugation technique are used in the design and fabrication of the microphone. The floating electrode is encapsulated by highly insulated materials to ensure that there is no electric-leakage passage between the floating electrode and the electrodes of the microphone. Net-free electronic charges (not “bonded” charges as in traditional electret) in the floating electrode can excite the electric field, which is similar to that of the traditional electret. The floating electrode can be easily charged by use of the “hot” electron technique, available using the avalanche breakdown of the p+-n junction. Therefore, the electret microphone is rechargeable, which can greatly increase the lifetime of the device. The preamplifier has been on-chip integrated in a junction-field-effect transistor (JFET) source-follower type with resistors by use of ion implantation. Electret charges are banded in a deep potential trap, thus, this microphone can operate at a high temperature (as high as 300°C) and has high stability and reliability. Experiments show that the prototype has a 3-mV/Pa sensitivity and a larger than 21-kHz frequency bandwidth in a 1 mm ×1-mm diaphragm area. Microphone performance can be further improved by optimized process and design. The fabrication is completely integrated-circuit (IC) compatible, hence, the microphone shows promise in integrated acoustic systems

Published in:

Microelectromechanical Systems, Journal of  (Volume:7 ,  Issue: 2 )