By Topic

A Quantitative Comparison of PRAM based Emulated Shared Memory Architectures to Current Multicore CPUs and GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The performance of current multicore CPUs and GPUs is limited in computations making frequent use of communication/ synchronization between the subtasks executed in parallel. This is because the directory-based cache systems scale weakly and/or the cost of synchronization is high. The Emulated Shared Memory (ESM) architectures relying on multithreading and efficient synchronization mechanisms have been developed to solve these problems affecting both performance and programmability of current machines. In this paper, we compare preliminarily the performance of three hardware implemented ESM architectures with state-of-the-art multicore CPUs and GPUs. The benchmarks are selected to cover different patterns of parallel computation and therefore reveal the performance potential of ESM architectures with respect to current multicores.

Published in:

Architecture of Computing Systems (ARCS), 2014 27th International Conference on

Date of Conference:

25-28 Feb. 2014