By Topic

Summary and Overview

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

This chapter provides a brief discussion of the method of moments (MoM) and the finite difference (FD) and finite element (FE) methods. These methods are approaches to solving for the electrostatic variables charge and voltage in a given geometric structure of electrodes and possibly dielectric interfaces. They are all based on developing a set of linear algebraic equations that approximate continuous variables with approximate locally defined variables. The FD method is derived from numerical approximations of Laplace's equation, and only the voltages at the corners of rectangular cells are defined. The FE method is derived from formal integral approximation techniques, and the voltage is defined throughout the cell. In both cases each cell communicates only with cells that share nodes. In the MoM method, calculating the coefficients was not trivial; however, in the FE and FD methods calculating the coefficients is easy.