Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Predicting (individual) software productivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Humphrey, W.S. ; Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Singpurwalla, Nozer D.

A method for projecting software productivity with reasonable accuracy which uses the statistical techniques of time series analysis is described. The measure of productivity is the development time required per line of code. In making productivity projections, the key issue is the need to achieve a balance between forecasting stability and responsiveness to changing conditions. An integrated moving average process of order one, using exponential smoothing of all the previous observations, is judged appropriate for software productivity analysis, particularly where there are limited data available or where conditions are sufficiently varied to make much of the available data inapplicable. Empirical evidence suggests that most commonly encountered time series can be reasonably well described by such methods. The methods for computing the weights used for exponential smoothing are described, as are the means for determining prediction intervals, or measures of forecast uncertainty. This data analytic approach uses historical data alone, unlike structural methods where learning curves as well as prior data are used to define the predictive process

Published in:

Software Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 2 )