By Topic

Backscattering measurements of alpine snowcovers at 5.3 and 35 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Strozzi ; Inst. of Appl. Phys., Bern Univ., Switzerland ; C. Matzler

This paper describes two network-analyzer (NA)-based scatterometers at 5.3 (C-band) and 35 GHz (Ka-band) as well as snowcover measurements made in the Swiss and Austrian Alps between December 1993 and January 1996. First, the setup and the mode of operation of the scatterometers are discussed. Both instruments measure the backscattering coefficients γ at hh, νν, νh, and νh polarizations and for incidence angles ranging from 0 to 70°. The accuracy of γ is generally better than ±1.8 dB, and the scatterometers are well suited for signature studies of natural surfaces. During the two years, the authors performed many backscattering measurements of natural, strongly layered snowcovers and the authors investigated relationships between γ and physical parameters of the snowcover. All measurements were collected in a signature catalogue. They report on results at 40° incidence angle. They found that the combined use of active sensors at 5.3 and 35 GHz allows the discrimination of various snowcover situations, if multitemporal information is available. In addition, they observed a relationship of γ at 5.3 GHz with the integrated column height of liquid water and dependencies of γ at 35 GHz on the height of the dry snow, on the volumetric liquid water content at the snow surface, and on the thickness of the refrozen crust at the snow surface

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:36 ,  Issue: 3 )