By Topic

Synthetic aperture radiometry evaluated by a two-channel demonstration model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laursen, B. ; Dept. of Electromagn. Syst., Tech. Univ. Denmark, Lyngby, Denmark ; Skou, N.

The Technical University of Denmark (TUD) Synthetic Aperture Radiometer (SARad) is a two-channel demonstration model that can simulate a two-dimensional (2D) thinned array radiometer having an unfilled aperture populated with several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs, followed by an image reconstruction based on an inverse Fourier transform, results in an imaging instrument without the need of mechanical scan. The thinned aperture and the nonscanning feature make the technique attractive for spaceborne radiometer systems, especially at low frequencies. The TUD SARad demonstration model consists of a two-channel Ku-band correlation radiometer with two horn antennas and an antenna mounting structure enabling the horns to be mounted in relevant positions within a certain aperture. A total aperture synthesis is obtained by sequentially placing the two antenna elements in all required pairs of positions and measuring the corresponding samples of the visibility function. The system has been used to demonstrate 2D synthetic aperture imaging of complex targets in outdoor ground experiments, a special feature of the system is that it uses a focused antenna system, thus enabling a short distance to the target. Set still utilizing image reconstruction algorithms identical to those used in a normal far-field situation. The aperture synthesis theory is discussed, with special emphasis on focused systems; the radiometer system is described; and images suitable for demonstration of resolution and other imaging properties are presented and discussed

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:36 ,  Issue: 3 )