By Topic

Bayesian classification and class area estimation of satellite images using stratification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Gorte ; Int. Inst. for Aerosp. Survey & Earth Sci., Enschede, Netherlands ; A. Stein

The paper describes an iterative extension to maximum a posteriori (MAP) supervised classification methods. A posteriori probabilities per class are used for classification as well as to obtain class area estimates. From these, an updated set of prior probabilities is calculated and used in the next iteration. The process converges to statistically correct area estimates. The iterative process can be combined effectively with a stratification of the image, which is made on the basis of additional map data. Moreover, it relies on the sample sets being representative. Therefore, the method is shown to be well applicable in combination with an existing GIS. The paper gives a description of the procedure and provides a mathematical foundation. An example is presented to distinguish residential, industrial, and greenhouse classes. A significant improvement of the classification was obtained

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:36 ,  Issue: 3 )