By Topic

Improved capacity approximations for Gaussian relay networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ritesh Kolte ; Stanford Univ., Stanford, CA, USA ; Ayfer Özgür

Consider a Gaussian relay network where a number of sources communicate to a destination with the help of several layers of relays. Recent work has shown that a compress-and-forward based strategy at the relays can achieve the capacity of this network within an additive gap. In this strategy, the relays quantize their observations at the noise level and map it to a random Gaussian codebook. The resultant capacity gap is independent of the SNR's of the channels in the network but linear in the total number of nodes. In this paper, we show that if the relays quantize their signals at a resolution decreasing with the number of nodes in the network, the additive gap to capacity can be made logarithmic in the number of nodes for a class of layered, time-varying wireless relay networks. This suggests that the rule-of-thumb to quantize the received signals at the noise level used for compress-and-forward in the current literature can be highly suboptimal.

Published in:

Information Theory Workshop (ITW), 2013 IEEE

Date of Conference:

9-13 Sept. 2013