By Topic

245 MHz graphene-aluminum nitride nano plate resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qian, Z. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Hui, Y. ; Liu, F. ; Kar, S.
more authors

This paper reports on the first demonstration of a high frequency (245 MHz) Graphene-Aluminum Nitride (G-AlN) nano plate resonator (NPR). For the first time, a two-dimensional (2D) electrically conductive graphene layer was integrated on top of an ultra-thin (500 nm) AlN nano plate and excited into a high frequency contour-extensional mode of vibration by piezoelectric transduction. Despite the reduced mass (~43%) and volume (~16%) and the increased sound velocity, hence resonant frequency (~23%), of the G-AlN NPR, unchanged device figure of merit (kt2·Q≈18) compared to the conventional AlN NPR was recorded, which demonstrates the great potential of the proposed technology for the implementation of a new class of ultra-sensitive and low noise G-AlN resonant sensors.

Published in:

Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on

Date of Conference:

16-20 June 2013