By Topic

Shannon capacity of M-ary redundant multitrack runlength limited codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vasic, B.V. ; Eng. Res. Center, Eastman Kodak Co., Rochester, NY, USA ; McLaughlin, S.W. ; Milenkovic, O.

We consider multiamplitude, multitrack runlength-limited (d, k) constrained channels with and without clock redundancy. We calculate the Shannon capacities of these channels and present some simple 100% efficient codes. To compute capacity a constraint graph equivalent to the usual runlength-limited constraint graph is used. The introduced graph model has the vertex labeling independent of number of tracks to be written on (in parallel), which provides computational savings when the number of tracks is large. We show that increasing the number of tracks written on in parallel provides significant increase of per-track capacity for the more restrictive clocking constraint case, i.e., when k<d, but it does not have much influence on the channel capacity, when k⩾d

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 2 )