By Topic

Source codes as random number generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Visweswariah, K. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Kulkarni, S.R. ; Verdú, S.

A random number generator generates fair coin flips by processing deterministically an arbitrary source of nonideal randomness. An optimal random number generator generates asymptotically fair coin flips from a stationary ergodic source at a rate of bits per source symbol equal to the entropy rate of the source. Since optimal noiseless data compression codes produce incompressible outputs, it is natural to investigate their capabilities as optimal random number generators. We show under general conditions that optimal variable-length source codes asymptotically achieve optimal variable-length random bit generation in a rather strong sense. In particular, we show in what sense the Lempel-Ziv (1978) algorithm can be considered an optimal universal random bit generator from arbitrary stationary ergodic random sources with unknown distributions

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 2 )