By Topic

Implementation of a DSP-controlled photovoltaic system with peak power tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chihchiang Hua ; Dept. of Electr. Eng, Nat. Yunlin Univ. of Sci. & Technol., Touliu City, Taiwan ; Jongrong Lin ; Chihming Shen

Photovoltaic systems normally use a maximum power point tracking (MPPT) technique to continuously deliver the highest possible power to the load when variations in the insulation and temperature occur. It overcomes the problem of mismatch between the solar arrays and the given load. A simple method of tracking the maximum power points (MPPs) and forcing the system to operate close to these points is presented. The principle of energy conservation is used to derive the large- and small-signal model and transfer function. By using the proposed model, the drawbacks of the state-space-averaging method can be overcome. The TI320C25 digital signal processor (DSP) was used to implement the proposed MPPT controller, which controls the DC/DC converter in the photovoltaic system. Simulations and experimental results show excellent performance

Published in:

IEEE Transactions on Industrial Electronics  (Volume:45 ,  Issue: 1 )