By Topic

The effect of patterns on thermal stress during rapid thermal processing of silicon wafers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hebb, J.P. ; Eaton Corp., Peabody, MA, USA ; Jensen, K.F.

The presence of patterns can lead to temperature nonuniformity and undesirable levels of thermal stress in silicon wafers during rapid thermal processing (RTP). Plastic deformation of the wafer can lead to production problems such as photolithography overlay errors and degraded device performance. In this work, the transient temperature fields in patterned wafers are simulated using a detailed finite-element-based reactor transport model coupled with a thin film optics model for predicting the effect of patterns on the wafer radiative properties. The temperature distributions are then used to predict the stress fields in the wafer and the onset of plastic deformation. Results show that pattern-induced temperature nonuniformity can cause plastic deformation during RTP, and that the problem is exacerbated by single-side heating, increased processing temperature, and increased ramp rate. Pattern effects can be mitigated by stepping the die pattern out to the edge of the wafer or by altering the thin film stack on the wafer periphery to make the radiative properties across the wafer more uniform

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:11 ,  Issue: 1 )