By Topic

Advanced User Interfaces for Upper Limb Functional Electrical Stimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31.0 $31.0
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Spinal cord injury (SCI) paralyzes approximately 12,000 people each year in the United States. Individuals with an injury at and above the sixth cervical vertebra (C6) lose function in the upper and lower limbs. To provide greater independence to this population, the restoration of reaching and grasping movements is critically important. Functional electrical stimulation (FES) is currently the only clinical approach for reanimating paralyzed muscles. The chapter starts by reviewing existing technologies for obtaining a control signal that is usable for a FES neuroprosthesis. This is followed by a discussion of the promise that recent advances in brain??-??machine interfaces (BMIs) hold for more natural user interfaces. Differences in the information content of potential signal sources suggest that enhanced control signals may be generated through an efficient combination of the available sources from each individual. Finally, the chapter discusses the relation between off-line decoder accuracy and online user performance.