By Topic

Interferometric estimation of three-dimensional ice-flow using ascending and descending passes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joughin, I.R. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Kwok, R. ; Fahnestock, M.A.

Satellite radar interferometry (SRI) provides an important new tool for determining ice-flow velocity. Interferometric measurements made from a single-track direction are sensitive only to a single component of the three-component velocity vector. Observations from along three different track directions would allow the full velocity vector to be determined. A north/south-looking synthetic aperture radar (SAR) could provide these observations over large portions of the globe, but not over large areas of the polar ice sheets. The authors develop and demonstrate a technique that allows the three-component velocity vector to be estimated from data acquired along two track directions (ascending and descending) under a surface-parallel flow assumption. This technique requires that there are accurate estimates of the surface slope, which are also determined interferometrically. To demonstrate the technique, the authors estimate the three-component velocity field for the Ryder Glacier, Greenland. Their results are promising, although they do not have yet ground-truth data with which to determine the accuracy of their estimates

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:36 ,  Issue: 1 )