Cart (Loading....) | Create Account
Close category search window
 

Influence of insulating barrier on the creepage discharge in transformer oil

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nakao, Y. ; Dept. of Electr. & Electron. Eng., Muroran Inst. of Technol., Japan ; Naruse, M. ; Suzuki, Y. ; Itoh, H.
more authors

The propagation aspects of a creepage discharge in transformer oil are observed simultaneously and in detail under a positive impulse voltage condition, by means of a high-speed Schlieren optical system, an LED current measurement system and a charge measurement system using a capacitor. In the present paper, the influence of the material type and the thickness of insulating barriers on the propagation of the impulse creepage discharge are discussed for a point to plane electrode geometry. In addition, the influence of a barrier surface to the electric field direction on the propagation of the impulse creepage discharge is discussed for a parallel plane electrode gap with a protruding point

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:4 ,  Issue: 6 )

Date of Publication:

Dec 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.