Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fonseca, C.M. ; Dept. of Autom. Control & Syst. Eng., Sheffield Univ., UK ; Fleming, P.J.

In optimization, multiple objectives and constraints cannot be handled independently of the underlying optimizer. Requirements such as continuity and differentiability of the cost surface add yet another conflicting element to the decision process. While “better” solutions should be rated higher than “worse” ones, the resulting cost landscape must also comply with such requirements. Evolutionary algorithms (EAs), which have found application in many areas not amenable to optimization by other methods, possess many characteristics desirable in a multiobjective optimizer, most notably the concerted handling of multiple candidate solutions. However, EAs are essentially unconstrained search techniques which require the assignment of a scalar measure of quality, or fitness, to such candidate solutions. After reviewing current revolutionary approaches to multiobjective and constrained optimization, the paper proposes that fitness assignment be interpreted as, or at least related to, a multicriterion decision process. A suitable decision making framework based on goals and priorities is subsequently formulated in terms of a relational operator, characterized, and shown to encompass a number of simpler decision strategies. Finally, the ranking of an arbitrary number of candidates is considered. The effect of preference changes on the cost surface seen by an EA is illustrated graphically for a simple problem. The paper concludes with the formulation of a multiobjective genetic algorithm based on the proposed decision strategy. Niche formation techniques are used to promote diversity among preferable candidates, and progressive articulation of preferences is shown to be possible as long as the genetic algorithm can recover from abrupt changes in the cost landscape

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:28 ,  Issue: 1 )