By Topic

A New Adaptive Small-Cell Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Ni ; ICT Centre, Commonwealth Sci. & Ind. Res. Organ. (CSIRO), Marsfield, NSW, Australia ; Collings, I.B.

Small cells are an emerging approach to improving hotspots throughput in cellular networks. Unfortunately, they cannot be deployed in a large scale under current cellular architectures, because of a severe interference problem and inefficient use of spectrum. We propose a new small-cell architecture which reconfigures topologies and frequency bands, adapting to changing traffic demands and interference-mitigating requirements. The new architecture consists of distributed small-cell nodes (SCN) and co-located baseband units (BBU), and adaptively switches the connections between the SCNs and BBUs. The BBUs can even be shared among multiple SCNs that use different frequency bands. Our architecture requires fewer BBUs, and the spectrum and energy utilization is significantly more efficient compared with current architectures. Simulations show that the new architecture is able to increase the spectrum utilization by 23.5%, and improve the network satisfaction regarding traffic demands by 144.2% for small cells covering 0.5 km2. Our architecture can also reduce the investment and energy consumption of the BBUs by up to 40%.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:31 ,  Issue: 5 )