By Topic

Numerical Study on Propeller Flow-Separation Control by DBD-Plasma Aerodynamic Actuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yufeng Cheng ; Dept. of Postgrad., Acad. of Equip., Beijing, China ; Xueke Che ; Wansheng Nie

The process of dielectric barrier discharge (DBD) plasma flow-separation control on screw propeller is numerically simulated based on the unsteady compressible Navier-Stokes equations loosely with DBD-plasma body force aerodynamic actuation mechanism. The effect and the mechanism of plasma flow control to enhance the propeller aerodynamic characteristics are discussed. The results show that the propeller aerodynamic characteristics will decrease as the altitude increase without plasma flow control, but it will first increase and then decrease as the altitude increases with plasma flow control. The effect of DBD-plasma flow control on the distribution of pressure is small at ground condition, and the difference of pressure distribution between general propeller and plasma efficiency-enhance propeller will be increased as the altitude increases. The effect of DBD-plasma flow-separation control will increase as the altitude increases. Mainly, the mechanism of the plasma flow control to enhance the propeller aerodynamic is obtained as follows. The flow separation on the propeller blade surface could be effectually controlled by DBD-plasma aerodynamic actuation, thereby increasing the efficiency of the propeller. The pressure of the windward surface of the blade will decrease by the plasma body force, which will increase the thrust of the propeller.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 4 )