By Topic

Monitoring for disease progression via mathematical time-series modeling: Actigraphy-based monitoring patients with depressive disorder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ha-Young Kim ; Sch. of Med., Dept. of Psychiatry & Behavioral Sci., Ajou Univ., Suwon, South Korea ; Hye Jin Kam ; Jihyun Lee ; Sanghyun Yoo
more authors

Home-based monitoring of the changes on patients' state using non-invasive sensing device such as actigraph is important in the aspect of treatment, management and prevention of many chronic diseases. Although the characteristics of the internal structures (i.e., the fluctuation or the trend) inherent in the actigraphic signal can significantly represent the disease state, there has been no method to extract and analyze such information. In this paper, we have proposed a novel approach to determine the disease state based on features extracted from the structural information of patient's actigraphic data by utilizing a mathematical time-series modeling method, autoregressive (AR)-generalized conditional heteroskedascity (GARCH) models. Our approach consists of three steps: finding structural breaks as the disease state transitions, building a time-series model for each local segment, and analyzing the features from each model to classify the severity of the disease. We have applied the proposed method to the actigraphic data of the patients with depressive disorder, and the experimental results showed that features extracted by our modeling method have played an important role to discriminate disease severities.

Published in:

2013 IEEE 10th Consumer Communications and Networking Conference (CCNC)

Date of Conference:

11-14 Jan. 2013