By Topic

Settling Time and Noise Optimization of a Three-Stage Operational Transconductance Amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seth, S. ; Department of Electrical Engineering, Stanford University, Stanford, CA, USA ; Murmann, B.

This paper presents the design and optimization of a nested-Miller compensated, three-stage operational transconductance amplifier (OTA) for use in switched-capacitor (SC) circuits. Existing design methods for three-stage OTAs often lead to sub-optimal solutions because they decouple inter-related metrics like noise and settling performance. In our approach, the problem of finding an optimal design with the best total integrated noise and settling time has been cohesively solved by formulating a nonlinear constrained optimization program. Equality, inequality, and semi-infinite constraints are formed using closed form symbolic expressions obtained by a closed loop analysis of the SC gain stage and the optimization program is solved by using the interior-point algorithm. For the optimization routine, there is no need to interface with a circuit simulator because all significant device parasitics are included in the model. The optimization and modeling steps are general in nature and can be applied to any amplifier or filter topology. Simulation results show that a 90-nm prototype amplifier achieves a $pm 0.1{hbox{%}}$ dynamic error settling time of 2.5 ns with a total integrated noise of 240 $mu {rm V}_{rm rms}$, while consuming 5.2 mW from a 1-V power supply.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 5 )