Cart (Loading....) | Create Account
Close category search window
 

Toward Efficient Distributed Algorithms for In-Network Binary Operator Tree Placement in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zongqing Lu ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Yonggang Wen ; Rui Fan ; Su-Lim Tan
more authors

In-network processing is touted as a key technology to eliminate data redundancy and minimize data transmission, which are crucial to saving energy in wireless sensor networks (WSNs). Specifically, operators participating in in-network processing are mapped to nodes in a sensor network. They receive data from downstream operators, process them and route the output to either the upstream operator or the sink node. The objective of operator tree placement is to minimize the total energy consumed in performing in-network processing. Two types of placement algorithms, centralized and distributed, have been proposed. A problem with the centralized algorithm is that it does not scale to large WSN's, because each sensor node is required to know the complete topology of the network. A problem with the distributed algorithm is their high message complexity. In this paper, we propose a heuristic algorithm to place a treestructured operator graph, and present a distributed implementation to optimize in-network processing cost and reduce the communication overhead. We prove a tight upper bound on the minimum in-network processing cost, and show that the heuristic algorithm has better performance than a canonical greedy algorithm. Simulation-based evaluations demonstrate the superior performance of our heuristic algorithm. We also give an improved distributed implementation of our algorithm that has a message overhead of O(M) per node, which is much less than the O(√NM log2 M) and O(√NM) complexities for two previously proposed algorithms, Sync and MCFA, respectively. Here, N is the number of network nodes and M is the size of the operator tree.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:31 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.