By Topic

A 96-GHz Oscillator by High-Q Differential Transmission Line loaded with Complementary Split-Ring Resonator in 65-nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Fei ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ; Hao Yu ; Yang Shang ; Deyun Cai
more authors

A 96-GHz CMOS oscillator is demonstrated in this brief with the use of a high-Q metamaterial resonator. The proposed metamaterial resonator is constructed by a differential transmission line (T-line) loaded with complementary split-ring resonator engraved on the T-line. A negative real part of permittivity, i.e., , is observed near the resonance frequency, which introduces a sharp stopband and, thus, leads to a high-Q resonance. This brief is the first in literature to explore CMOS on-chip metamaterial resonator for oscillator design at the millimeter-wave frequency region. Compared with the existing oscillators with a LC-tank-based resonator at around 100 GHz, the proposed 96-GHz oscillator with high- metamaterial resonator shows much lower phase noise of 111.5 dBc/Hz at 10-MHz offset and figure-of-merit of 182.4 dBc/Hz.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:60 ,  Issue: 3 )