By Topic

Relational divergence based classification on Riemannian manifolds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alavi, A. ; NICTA, St. Lucia, QLD, Australia ; Harandi, M.T. ; Sanderson, C.

A recent trend in computer vision is to represent images through covariance matrices, which can be treated as points on a special class of Riemannian manifolds. A popular way of analysing such manifolds is to embed them in Euclidean spaces, a process which can be interpreted as warping the feature space. Embedding manifolds is not without problems, as the manifold structure may not be accurately preserved. In this paper, we propose a new method for analysing Riemannian manifolds, where embedding into Euclidean spaces is not explicitly required. To this end, we propose to represent Riemannian points through their similarities to a set of reference points on the manifold, with the aid of the recently proposed Stein divergence, which is a symmetrised version of Bregman matrix divergence. Classification problems on manifolds are then effectively converted into the problem of finding appropriate machinery over the space of similarities, which can be tackled by conventional Euclidean learning methods such as linear discriminant analysis. Experiments on face recognition, person re-identification and texture classification show that the proposed method outperforms state-of-the-art approaches, such as Tensor Sparse Coding, Histogram Plus Epitome and the recent Riemannian Locality Preserving Projection.

Published in:

Applications of Computer Vision (WACV), 2013 IEEE Workshop on

Date of Conference:

15-17 Jan. 2013