By Topic

Statistical angular error-based triangulation for efficient and accurate multi-view scene reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Recker, S. ; Univ. of California, Davis, Davis, CA, USA ; Hess-Flores, M. ; Joy, K.I.

This paper presents a framework for N-view triangulation of scene points, which improves processing time and final reprojection error with respect to standard methods, such as linear triangulation. The framework introduces an angular error-based cost function, which is robust to outliers and inexpensive to compute, and designed such that simple adaptive gradient descent can be applied for convergence. Our method also presents a statistical sampling component based on confidence levels, that reduces the number of rays to be used for triangulation of a given feature track. It is shown how the statistical component yields a meaningful yet much reduced set of representative rays for triangulation, and how the application of the cost function on the reduced sample can efficiently yield faster and more accurate solutions. Results are demonstrated on real and synthetic data, where it is proven to significantly increase the speed of triangulation and optimize reprojection error in most cases. This makes it especially attractive for efficient triangulation of large scenes given the speed and low memory requirements.

Published in:

Applications of Computer Vision (WACV), 2013 IEEE Workshop on

Date of Conference:

15-17 Jan. 2013