Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Large-scale web video event classification by use of Fisher Vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen Sun ; Inst. for Robot. & Intell. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Nevatia, R.

Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level activities. We follow the approach of constructing fixed length feature vectors from local feature descriptors for classification using an SVM. Our key contribution is the study of the utility of Fisher Vector representation in improving results compared to the conventional Bag-of-Words (BoW) approach. Such coding has shown to be useful for static image classification in the past but not applied to video categorization. We perform tests on the challenging NIST TRECVID Multimedia Event Detection (MED) dataset, which has thousand hours of unconstrained user generated videos; our approach achieves as much as 35% improvement over the BoW baseline. We also offer an analysis of possible causes of such improvements.

Published in:

Applications of Computer Vision (WACV), 2013 IEEE Workshop on

Date of Conference:

15-17 Jan. 2013