By Topic

Towards cost-effective maintenance of power transformer by accurately predicting its insulation condition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghunem, R.A. ; Electr. & Comput. Eng. Dept., Univ. of Waterloo, Waterloo, ON, Canada ; Shaban, K.B. ; El-Hag, A.H. ; Assaleh, K.

Insulation resistance (IR) or Megger test has been commonly performed in both preventive and corrective maintenance activities to verify power transformers' insulation condition. Other insulation diagnosis tests such as oil breakdown voltage (BDV), water content and dissolved-gas-in-oil analysis have been conducted along with the IR test. In this paper, a prediction model is developed to correlate IR measurements of the power transformer with its oil quality parameters, the concentration of its total dissolved combustible gases (TDCG), and its carbon dioxide to carbon monoxide concentration (CO2/CO) ratio. Four models, based on feed-forward artificial neural networks with back-propagation, are trained on collected data of real measurements. Accuracy levels of 96%, 84%, 88%, and 91% are obtained for BDV, water content, TDCG, and CO2/CO ratio respectively. Utilizing the proposed model can reduce maintenance costs by preventing and shortening transformers' outage times using inexpensive test, i.e. using IR test only.

Published in:

Electrical Power and Energy Conference (EPEC), 2012 IEEE

Date of Conference:

10-12 Oct. 2012