By Topic

Postural Responses of Adults With Cerebral Palsy to Combined Base of Support and Visual Field Rotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Slaboda, J.C. ; Dept. of Phys. Therapy, Temple Univ., Philadelphia, PA, USA ; Lauer, R.T. ; Keshner, E.A.

We employed a virtual environment to examine the postural behaviors of adults with cerebral palsy (CP). Four adults with CP (22-32 years) and nine healthy adults (21-27 years) were tested with a Rod and Frame protocol. They then stood quietly on a platform within a three-wall virtual environment. The platform was either kept stationary or tilted 3 into dorsiflexion in the dark or with pitch up and down visual field rotations at 30 /s and 45 /s. While the visual field rotated, the platform was held tilted for 30 s and then slowly returned to a neutral position over 30 s. Center of pressure (CoP) was recorded and center of mass (CoM) as well as trunk and ankle angles were calculated. Electromyography (EMG) responses of the ankle and the hip muscles were recorded and analyzed using wavelets. Larger angular deviations from vertical and horizontal in the Rod and Frame test indicated that adults with CP were more visually dependent than healthy adults. Adults with CP had difficulty maintaining balance when standing on a stationary platform during pitch upward rotation of the visual scene. When the platform was tilted during visual field rotations, adults with CP took longer to stabilize their posture and had larger CoM oscillations than when in the dark. The inability to compensate for busy visual environments could impede maintenance of functional locomotion in adults with CP. Employing a visual field stimulus for assessment and training of postural behaviors would be more meaningful than testing in the dark.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 2 )