By Topic

Selective max-min algorithm for low-density parity-check decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmed H. Hareedy ; Department of Electronics and Communications, Faculty of Engineering, Cairo University, Giza 12613, Egypt ; Mohamed M. Khairy

With the growing importance of error correction in different communication systems, using an efficient and easily implementable code is always appreciated. One of the most important codes is the low-density parity-check (LDPC) code. Two main iterative decoding algorithms are usually used, namely the sum-product (SP) algorithm (also referred to as belief propagation) and the min-sum (MS). The SP algorithm is more accurate but suffers from very high complexity. On the other hand, the MS algorithm has a much lower complexity at the expense of some performance degradation. To handle this performance degradation, many algorithms were presented in the literature as improvements for the MS, like the scaled MS and the offset MS. However, all those improved algorithms are more complex than the traditional MS. In this study, an efficient and low complexity LDPC decoding algorithm, called selective max-min (SMM), is proposed. The SMM performance is closer to SP than to MS as long as the average number of ones per column in the parity check matrix is around or less than 4 (which is the case for most of the communication systems using LDPC). On the other hand, the SMM exhibits only a minor complexity increase over traditional MS making it suitable for practical implementation.

Published in:

IET Communications  (Volume:7 ,  Issue: 1 )