By Topic

New Solutions of the Corona Discharge Equation for Applications in Waveguide Filters in SAT-COM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chavarria, P.A.C. ; Colonia Barrio la Laguna Ticoman, Inst. Politec. Nac., Mexico City, Mexico ; Sanchez, I.M.

The microwave device designers in the industry of satellite communications systems use analytical solutions of the corona discharge equation, employing the concept of characteristic diffusion length, to determine whether its intensity in a particular device, such as waveguides and filters, is within established margins. The analytical solutions provide the lowest possible breakdown threshold. Until now, the difference of the gap between the electrical breakdown values obtained experimentally and provided by analytical solutions has not yet been explained sufficiently. This paper shows how it is inappropriate to use the characteristic diffusion length (Λ) rather than the effective diffusion length (Λeff), although in principle electric fields are considered in terms of its geometry. The presence of an ionic space charge generated during the time evolution of the electron avalanche alters the medium properties in waveguide filters, occasioning signal absorption and reflection anomalies that modify the condition of homogeneous fields in inhomogeneous fields.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 4 )