By Topic

Shielding Effectiveness of Carbon–Fiber Composite Aircraft Using Large Cavity Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brian D. Cordill ; Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, USA ; Sarah A. Seguin ; Mark S. Ewing

This paper extends reverberation chamber theory to include chambers constructed out of non-metallic composite materials. This extension allows reverberation chamber theory to predict the shielding effectiveness (SE) of modern aluminum and composite aircraft. Existing theory is based on a power balance approach for aperture-excited cavities, and this paper extends it to include leakage through the cavity walls. Cavity excitation and power dissipation mechanisms are examined in detail, and the cavity SE is related to cavity energy loss in terms of the “quality factor.” SE measurements were made on a partially assembled Uncrewed Aerial System constructed with a carbon-fiber composite skin. The test-analysis agreement shows a high degree of correlation.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:62 ,  Issue: 4 )