By Topic

1.5 Gbit/s Multi-Channel Visible Light Communications Using CMOS-Controlled GaN-Based LEDs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Shuailong Zhang ; Inst. of Photonics, Univ. of Strathclyde, Glasgow, UK ; Watson, S. ; McKendry, J.J.D. ; Massoubre, D.
more authors

An on-chip multi-channel visible light communication (VLC) system is realized through a blue (450 nm) GaN-based micron-size light-emitting diode (μLED) array integrated with complementary metal-oxide-semiconductor (CMOS) electronics. When driven by a custom-made CMOS driving board with 16 independent parallel data input ports, this μLED array device is computer controllable via a standard USB interface and is capable of delivering high speed parallel data streams for VLC. A total maximum error-free data transmission rate of 1.5 Gbit/s is achieved over free space by modulating four μLED pixels simultaneously using an on-off key non-return to zero modulation scheme. Electrical and optical crosstalk of the system has also been investigated in detail and the further optimization of CMOS design to minimize the crosstalk is proposed.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 8 )