By Topic

Wavelet Maxima Dispersion for Breathy to Tense Voice Discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
John Kane ; Phonetics and Speech Laboratory, School of Linguistic, Speech and Communication Sciences, Trinity College Dublin, Dublin, Ireland ; Christer Gobl

This paper proposes a new parameter, the Maxima Dispersion Quotient (MDQ), for differentiating breathy to tense voice. Maxima derived following wavelet decomposition are often used for detecting edges in image processing, where locations of these maxima organize in the vicinity of the edge location. Similarly for tense voice, which typically displays sharp glottal closing characteristics, maxima following wavelet analysis are organized in the vicinity of the glottal closure instant (GCI). Contrastingly, as the phonation type tends away from tense voice towards a breathier phonation it is observed that the maxima become increasingly dispersed. The MDQ parameter is designed to quantify the extent of this dispersion and is shown to compare favorably to existing voice quality parameters, particularly for the analysis of continuous speech. Also, classification experiments reveal a significant improvement in the detection of the voice qualities when MDQ is included as an input to the classifier. Finally, MDQ is shown to be robust to additive noise down to a Signal-to-Noise Ratio of 10 dB.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:21 ,  Issue: 6 )