By Topic

Lightpath rerouting scheme for dynamic traffic in WDM all-optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amdouni, N. ; Inf. & Commun. Technol. Dept., Univ. Tunis - El Manar, Tunis, Tunisia ; Koubaa, M. ; Aguili, T.

This paper considers rerouting and minimization of incurred disruption due to rerouting in all-optical wavelength division multiplexed (WDM) network with dynamic (random) traffic arrivals and departures. One limitation of such a network is the wavelength continuity constraint imposed by the all-optical cross-connect switches which do not allow a circuit to be placed on a non wavelength-continuous route. Rerouting is proposed to rearrange certain existing lightpaths to create a wavelength-continuous route in order to accommodate a new connection request. Recently, a wavelength rerouting scheme called “Parallel Move-To-Vacant Wavelength Retuning (MTV-WR)” with many attractive features such as shorter disruption period and simple switching control has been proposed. In this paper, we propose a new lightpath rerouting scheme based on the “Parallel MTV-WR” rerouting scheme minimizing the rejection ratio whilst keeping a little service disruption period due to rerouting. We assume that a new random lightpath demand (RLD) arrives at time t and that its routing phase fails to set up it. To establish the new RLD the proposed algorithm tries to reroute one or several RLDs by only changing the used wavelength whilst keeping the same physical path in order to reduce the disruption period. If it fails, it tries to reroute a minimum number of active RLDs by changing the physical path and then possibly the used wavelengths. Simulation results show that our proposed algorithm computes a better rejection ratio than the rerouting algorithms previously presented in the literature while keeping a minimum number of rerouted lightpaths and a very small service disruption period.

Published in:

Computer Systems and Industrial Informatics (ICCSII), 2012 International Conference on

Date of Conference:

18-20 Dec. 2012