Cart (Loading....) | Create Account
Close category search window
 

Low Overhead Intra-Symbol Carrier Phase Recovery for Reduced-Guard-Interval CO-OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Qunbi Zhuge ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada ; Morsy-Osman, M.H. ; Plant, D.V.

We propose intra-symbol carrier phase recovery (IS-CPR) for reduced-guard-interval (RGI) CO-OFDM in order to compensate for the intra-symbol phase shift (ISPS) between subcarriers that is caused by the dispersion-enhanced phase noise (DEPN). We begin by proposing a pre-emphasized pilot subcarrier (PEPS) approach to reduce the pilot subcarrier overhead for the following IS-CPR algorithms. Then, we show a statistical analysis of the DEPN-induced ISPS between subcarriers within one symbol, which is related to the accumulated chromatic dispersion (CD). Next, three algorithms are proposed for IS-CPR including maximum-likelihood (ML) phase estimation, digital phase-locked loop (DPLL), and feedforward carrier recovery (FFCR) employing either the Mth power scheme in case of QPSK modulation or the QPSK partitioning scheme for the 16-QAM case. The performance and complexity of these algorithms are compared. Through simulations, we show that in comparison to conventional common phase error (CPE) compensation, IS-CPR significantly improves the linewidth tolerance at 1 dB signal-to-noise ratio (SNR) penalty for a bit error rate (BER) = 10-3 from 300 kHz to 2 MHz for 112 Gb/s systems (28 Gbaud QPSK) at 3200 km transmission distance, and from 70 kHz to 550 kHz for 448 Gb/s (56 Gbaud 16-QAM) systems at 1600 km transmission distance.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 8 )

Date of Publication:

April15, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.