Cart (Loading....) | Create Account
Close category search window

Maximizing Phoneme Recognition Accuracy for Enhanced Speech Intelligibility in Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Petkov, P.N. ; Sch. of Electr. Eng., KTH-R. Inst. of Technol., Stockholm, Sweden ; Henter, G.E. ; Kleijn, W.B.

An effective measure of speech intelligibility is the probability of correct recognition of the transmitted message. We propose a speech pre-enhancement method based on matching the recognized text to the text of the original message. The selected criterion is accurately approximated by the probability of the correct transcription given an estimate of the noisy speech features. In the presence of environment noise, and with a decrease in the signal-to-noise ratio, speech intelligibility declines. We implement a speech pre-enhancement system that optimizes the proposed criterion for the parameters of two distinct speech modification strategies under an energy-preservation constraint. The proposed method requires prior knowledge in the form of a transcription of the transmitted message and acoustic speech models from an automatic speech recognition system. Performance results from an open-set subjective intelligibility test indicate a significant improvement over natural speech and a reference system that optimizes a perceptual-distortion-based objective intelligibility measure. The computational complexity of the approach permits use in on-line applications.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.