By Topic

An Information-Geometric Characterization of Chernoff Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Frank Nielsen ; Sony Computer Science Laboratories, Inc., Shinagawa-ku, Tokyo, Japan

The Chernoff information was originally introduced for bounding the probability of error of the Bayesian decision rule in binary hypothesis testing. Nowadays, it is often used as a notion of symmetric distance in statistical signal processing or as a way to define a middle distribution in information fusion. Computing the Chernoff information requires to solve an optimization problem that is numerically approximated in practice. We consider the Chernoff distance for distributions belonging to the same exponential family including the Gaussian and multinomial families. By considering the geometry of the underlying statistical manifold, we define exactly the solution of the optimization problem as the unique intersection of a geodesic with a dual hyperplane. Furthermore, we prove analytically that the Chernoff distance amounts to calculate an equivalent but simpler Bregman divergence defined on the distribution parameters. It follows a closed-form formula for the singly-parametric distributions, or an efficient geodesic bisection search for multiparametric distributions. Finally, based on this information-geometric characterization, we propose three novel information-theoretic symmetric distances and middle distributions, from which two of them admit always closed-form expressions.

Published in:

IEEE Signal Processing Letters  (Volume:20 ,  Issue: 3 )