Cart (Loading....) | Create Account
Close category search window
 

UHF RFID Localization Based on Synthetic Apertures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Miesen, R. ; Inst. of Microwaves & Photonics, Friedrich-Alexander-Univ. of Erlangen-Nuremberg, Erlangen, Germany ; Kirsch, F. ; Vossiek, M.

Reading ranges are being extended in the wake of recent advances in UHF radio frequency identification (RFID) systems, and with the advent of larger reading ranges, tag localization has moved into the spotlight. Recently, we introduced a new UHF RFID tag localization technique. The proposed method is based on phase measurements taken along a synthetic aperture. A holographic image is calculated based on the scanned phase values. The image represents the spatial probability density function for the actual tag location. This paper presents this innovative method in detail. Simulations that illustrate the effect of the given trajectory are included. Extensive measurements obtained in a reflective lab environment are presented. We discuss the method's effectiveness with respect to measurement errors, antenna phase center distortions, and the available phase information. The results show the potential practical applications for the method in moving reader antennas, such as handheld readers or readers mounted on vehicles like forklifts or mobile robotic systems.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 3 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.