Cart (Loading....) | Create Account
Close category search window

A Cross-Layer QoS-Aware Communication Framework in Cognitive Radio Sensor Networks for Smart Grid Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shah, G.A. ; Dept. of Electr. & Electron. Eng., Koc Univ., Istanbul, Turkey ; Gungor, V.C. ; Akan, O.B.

Electromagnetic interference, equipment noise, multi-path effects and obstructions in harsh smart grid environments make the quality-of-service (QoS) communication a challenging task for WSN-based smart grid applications. To address these challenges, a cognitive communication based cross-layer framework has been proposed. The proposed framework exploits the emerging cognitive radio technology to mitigate the noisy and congested spectrum bands, yielding reliable and high capacity links for wireless communication in smart grids. To meet the QoS requirements of diverse smart grid applications, it differentiates the traffic flows into different priority classes according to their QoS needs and maintains three dimensional service queues attributing delay, bandwidth and reliability of data. The problem is formulated as a Lyapunov drift optimization with the objective of maximizing the weighted service of the traffic flows belonging to different classes. A suboptimal distributed control algorithm (DCA) is presented to efficiently support QoS through channel control, flow control, scheduling and routing decisions. In particular, the contributions of this paper are three folds; employing dynamic spectrum access to mitigate with the channel impairments, defining multi-attribute priority classes and designing a distributed control algorithm for data delivery that maximizes the network utility under QoS constraints. Performance evaluations in ns-2 reveal that the proposed framework achieves required QoS communication in smart grid.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

Aug. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.