By Topic

Play patterns for path prediction in multiplayer online games

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jacob Agar ; School of Computer Science, Carleton University, Ottawa, Canada ; Jean-Pierre Corriveau ; Wei Shi

Traditional dead reckoning schemes predict a player's position by assuming that players move with constant force or velocity. However, because player movement is rarely linear in nature, using linear prediction fails to produce an accurate result. Among existing dead reckoning methods, only few focus on improving prediction accuracy via genuinely non-traditional methods for predicting the path of a player. In this paper, we propose a new prediction method based on play patterns. We implemented a 2D top-down multiplayer online game to act as a test harness that we used to collect play data from 44 experienced players. From the data for half of these players, we extracted play patterns, which we used to create our dead reckoning algorithm. A comparative evaluation proceeding from an extensive set of simulations (using the other half of our play data) suggests that our EKB algorithm yields more accurate predictions than the IEEE standard dead reckoning algorithm and the recent “Interest Scheme” algorithm.

Published in:

Communications and Networking in China (CHINACOM), 2012 7th International ICST Conference on

Date of Conference:

8-10 Aug. 2012