By Topic

On Capacity of Large-Scale MIMO Multiple Access Channels with Distributed Sets of Correlated Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Jun Zhang ; Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China ; Chao-Kai Wen ; Shi Jin ; Xiqi Gao
more authors

In this paper, a deterministic equivalent of ergodic sum rate and an algorithm for evaluating the capacity-achieving input covariance matrices for the uplink large-scale multiple-input multiple-output (MIMO) antenna channels are proposed. We consider a large-scale MIMO system consisting of multiple users and one base station with several distributed antenna sets. Each link between a user and an antenna set forms a two-sided spatially correlated MIMO channel with line-of-sight (LOS) components. Our derivations are based on novel techniques from large dimensional random matrix theory (RMT) under the assumption that the numbers of antennas at the terminals approach to infinity with a fixed ratio. The deterministic equivalent results (the deterministic equivalent of ergodic sum rate and the capacity-achieving input covariance matrices) are easy to compute and shown to be accurate for realistic system dimensions. In addition, they are shown to be invariant to several types of fading distribution.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:31 ,  Issue: 2 )