Cart (Loading....) | Create Account
Close category search window

Inverter harmonic reduction using Walsh function harmonic elimination method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsorng-Juu Liang ; Kaohsiung Polytech. Inst., Taiwan ; O'Connell, R.M. ; Hoft, R.G.

A pulse-width-modulated (PWM) inverter using the Walsh function harmonic elimination method is proposed in this paper. By using the Walsh domain waveform analytic technique, the harmonic amplitudes of the inverter output voltage can be expressed as functions of switching angles. Thus, the switching angles are optimized by solving linear algebraic equations instead of solving nonlinear transcendental equations. The local piecewise linear relations between the switching angles and the fundamental amplitude can be obtained under an appropriate initial condition. By searching all feasible initial conditions, the global solutions are obtained. The relations between switching angles and fundamental amplitude can be approximated by straight-line curve fitting. Thus, on-line control of fundamental amplitude and frequency is possible for the microcomputer-based implementation. The developed algorithm can be applied to both bipolar and unipolar switching schemes. The theoretical predictions are confirmed by computer simulations and DSP-based hardware implementation

Published in:

Power Electronics, IEEE Transactions on  (Volume:12 ,  Issue: 6 )

Date of Publication:

Nov 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.