By Topic

Spectral Derivative Features for Classification of Hyperspectral Remote Sensing Images: Experimental Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiangfeng Bao ; School of Computer Science, Fudan University, Shanghai, China ; Mingmin Chi ; Jón Atli Benediktsson

Derivatives of spectral reflectance signatures can capture salient features of different land-cover classes. Such information has been used for supervised classification of remote sensing data along with spectral reflectance. In the paper, we study how supervised classification of hyperspectral remote sensing data can benefit from the use of derivatives of spectral reflectance without the aid of other techniques, such as dimensionality reduction and data fusion. An empirical conclusion is given based on a large amount of experimental evaluations carried out on three real hyperspectral remote sensing data sets. The experimental results show that when a training data set is of a small size or the quality of the data is poor, the use of additional first order derivatives can significantly improve classification accuracies along with original spectral features when using classifiers which can avoid the “curse of dimensionality,” such as the SVM algorithm.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 2 )