By Topic

Event-triggered average consensus control for discrete-time multi-agent systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, X. ; Seventh Res. Div., Beihang Univ., Beijing, China ; Hao, F.

In this study, the event-triggered average consensus control for discrete-time multi-agent systems (MASs) is investigated. Based on a Lyapunov function, a sufficient condition is derived to give an event condition, which is designed based on the measurement error and the disagreement vector. The sufficient condition, described in terms of a linear matrix inequality (LMI), is easily solved by available LMI toolbox. Under this event condition, the event-triggered MAS reaches average consensus. Furthermore, the results are extended to the self-triggered consensus control, where the next task release time can be decided depending on the current sampled data. In addition, a certain restriction on the event condition is proposed in order to avoid Zeno-behaviour. Finally, two simulation examples illustrate the effectiveness of the theoretical results.

Published in:

Control Theory & Applications, IET  (Volume:6 ,  Issue: 16 )