Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Passive wireless irreversible humidity threshold sensor exploiting the deliquescence behavior of salts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sauer, S. ; Inst. of Semicond. & Microsyst., Tech. Univ. Dresden, Dresden, Germany ; Fischer, W.

Passive RFID transponder applications, requiring integrated sensors, can greatly benefit from unconventional sensing strategies. Especially in situations where there is the need to continuously monitor environmental properties, but without having access to an energy source or an omnipresent reader station in communication range. Since in many cases the violation of a threshold value is of interest, alternative sensing strategies, exploiting irreversible phenomena not considered or even avoided before, have the potential of finding a successful use in low cost (e.g. chip-based sensor RFIDs) or lowest cost (e.g. chipless sensor RFIDs) wireless sensor applications. In this work, a stand-alone, simple, passive, wireless humidity threshold sensor is presented, which exploits the deliquescence behavior of salts. Based on a double planar coil arrangement, an oscillating circuit is formed. Its resonance frequency irreversibly changes, if a threshold relative humidity is exceeded for a certain exposition time.

Published in:

Sensors, 2012 IEEE

Date of Conference:

28-31 Oct. 2012